Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Stem Cell Res Ther ; 13(1): 145, 2022 04 04.
Article in English | MEDLINE | ID: covidwho-1775335

ABSTRACT

BACKGROUND: With the widespread of Coronavirus Disease 2019 pandemic, in spite of the newly emerging vaccines, mutated strains remain a great obstacle to supportive and preventive measures. Coronavirus 19 survivors continue to face great danger of contacting the disease again. As long as no specific treatment has yet to be approved, a great percentage of patients experience real complications, including among others, lung fibrosis. High oxygen inhalation especially for prolonged periods is per se destructive to the lungs. Nevertheless, oxygen remains the first line support for such patients. In the present study we aimed at investigating the role of amniotic fluid-mesenchymal stem cells in preventing versus treating the hyperoxia-induced lung fibrosis in rats. METHODS: The study was conducted on adult albino rats; 5 pregnant female rats were used as amniotic fluid donors, and 64 male rats were randomly divided into two groups: Control group; where 10 rats were kept in normal atmospheric air then sacrificed after 2 months, and hyperoxia-induced lung fibrosis group, where 54 rats were exposed to hyperoxia (100% oxygen for 6 h/day) in air-tight glass chambers for 1 month, then randomly divided into the following 5 subgroups: Hyperoxia group, cell-free media-treated group, stem cells-prophylactic group, stem cells-treated group and untreated group. Isolation, culture and proliferation of stem cells were done till passage 3. Pulmonary function tests, histological examination of lung tissue under light and electron microscopes, biochemical assessment of oxidative stress, IL-6 and Rho-A levels, and statistical analysis of data were performed. F-test (ANOVA) was used for normally distributed quantitative variables, to compare between more than two groups, and Post Hoc test (Tukey) for pairwise comparisons. RESULTS: Labelled amniotic fluid-mesenchymal stem cells homed to lung tissue. Stem cells administration in the stem cells-prophylactic group succeeded to maintain pulmonary functions near the normal values with no significant difference between their values and those of the control group. Moreover, histological examination of lung tissues showed that stem cells-prophylactic group were completely protected while stem cells-treated group still showed various degrees of tissue injury, namely; thickened interalveolar septa, atelectasis and interstitial pneumonia. Biochemical studies after stem cells injection also showed decreased levels of RhoA and IL-6 in the prophylactic group and to a lesser extent in the treated group, in addition to increased total antioxidant capacity and decreased malondialdehyde in the stem cells-injected groups. CONCLUSIONS: Amniotic fluid-mesenchymal stem cells showed promising protective and therapeutic results against hyperoxia-induced lung fibrosis as evaluated physiologically, histologically and biochemically.


Subject(s)
COVID-19 , Hyperoxia , Amniotic Fluid , Animals , Female , Humans , Hyperoxia/complications , Hyperoxia/pathology , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Stem Cells/pathology
2.
Am J Pathol ; 191(9): 1511-1519, 2021 09.
Article in English | MEDLINE | ID: covidwho-1432756

ABSTRACT

Chemosensory changes are well-reported symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The virus targets cells for entry by binding of its spike protein to cell-surface angiotensin-converting enzyme 2 (ACE2). It is not known whether ACE2 is expressed on taste receptor cells (TRCs), or whether TRCs are infected directly. in situ hybridization probe and an antibody specific to ACE2 indicated presence of ACE2 on a subpopulation of TRCs (namely, type II cells in taste buds in taste papillae). Fungiform papillae of a SARS-CoV-2+ patient exhibiting symptoms of coronavirus disease 2019 (COVID-19), including taste changes, were biopsied. Presence of replicating SARS-CoV-2 in type II cells was verified by in situ hybridization. Therefore, taste type II cells provide a potential portal for viral entry that predicts vulnerabilities to SARS-CoV-2 in the oral cavity. The continuity and cell turnover of a patient's fungiform papillae taste stem cell layer were disrupted during infection and had not completely recovered 6 weeks after symptom onset. Another patient experiencing post-COVID-19 taste disturbances also had disrupted stem cells. These results demonstrate the possibility that novel and sudden taste changes, frequently reported in COVID-19, may be the result of direct infection of taste papillae by SARS-CoV-2. This may result in impaired taste receptor stem cell activity and suggest that further work is needed to understand the acute and postacute dynamics of viral kinetics in the human taste bud.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19 , Gene Expression Regulation, Enzymologic , SARS-CoV-2/metabolism , Stem Cells , Taste Buds , COVID-19/enzymology , COVID-19/pathology , COVID-19/virology , Female , Humans , Male , Stem Cells/enzymology , Stem Cells/pathology , Stem Cells/virology , Taste Buds/enzymology , Taste Buds/pathology , Taste Buds/virology
3.
Biomed Res Int ; 2021: 9915927, 2021.
Article in English | MEDLINE | ID: covidwho-1376538

ABSTRACT

BACKGROUND: The SARS-CoV-2 virus is the cause of the latest pandemic of the 21st century; it is responsible for the development of COVID-19. Within the multiple study models for both the biology and the treatment of SARS-CoV-2, the use of stem cells has been proposed because of their ability to increase the immune response and to repair tissue. Therefore, the objective of this review is to evaluate the role of stem cells against SARS-CoV-2 and COVID-19 in order to identify their potential as a study model and as a possible therapeutic source against tissue damage caused by this virus. Therefore, the following research question was established: What is the role of stem cells in the study of SARS-CoV-2 and the treatment of COVID-19? MATERIALS AND METHODS: A search was carried out in the electronic databases of PUBMED, Scopus, and ScienceDirect. The following keywords were used: "SARS-CoV-2," "COVID-19," and "STEM CELL," plus independent search strategies with the Boolean operators "OR" and "AND." The identified reports were those whose main objective was the study of stem cells in relation to SARS-CoV-2 or COVID-19. For the development of this study, the following inclusion criteria were taken into account: studies whose main objective was the study of stem cells in relation to SARS-CoV-2 or COVID-19 and clinical case studies, case reports, clinical trials, pilot studies, in vitro, or in vivo studies. For assessment of the risk of bias for in vitro studies, the SciRAP tool was used. The data collected for each type of study, clinical or in vitro, were analyzed with descriptive statistics using the SPSS V.22 program. RESULTS: Of the total of studies included (n = 39), 22 corresponded to in vitro investigations and 17 to human studies (clinical cases (n = 9), case series (n = 2), pilot clinical trials (n = 5), clinical trials (n = 1)). In vitro studies that induced pluripotent stem cells were the most used (n = 12), and in clinical studies, the umbilical stem cells derived were the most reported (n = 11). The mean age of the study subjects was 58.3 years. After the application of stem cell therapy, the follow-up period was 8 days minimum and 90 days maximum. Discussion. The mechanism by which the virus enters the cell is through protein "S," located on the surface of the membrane, by recognizing the ACE2 receptor located on the target cell. The evidence that the expression of ACE2 and TMPRSS2 in stem cells indicates that stem cells from bone marrow and amniotic fluid have very little expression. This shows that stem cell has a low risk of infection with SARS-CoV-2. CONCLUSION: The use of stem cells is a highly relevant therapeutic option. It has been shown in both in vitro studies and clinical trials that it counteracts the excessive secretion of cytokines. There are even more studies that focus on long-term follow-up; thus, the potential for major side effects can be analyzed more clearly. Finally, the ethical use of stem cells from fetal or infant origin needs to be regulated. The study was registered in PROSPERO (no. CRD42021229038). The limitations of the study were because of the methodology employed, the sample was not very large, and the follow-up period of the clinical studies was relatively short.


Subject(s)
COVID-19/pathology , COVID-19/therapy , SARS-CoV-2/isolation & purification , Stem Cell Transplantation/methods , Stem Cells/cytology , COVID-19/metabolism , COVID-19/virology , Clinical Trials as Topic , Humans , Stem Cells/pathology
4.
J Clin Invest ; 131(13)2021 07 01.
Article in English | MEDLINE | ID: covidwho-1304352

ABSTRACT

The upper respiratory tract is compromised in the early period of COVID-19, but SARS-CoV-2 tropism at the cellular level is not fully defined. Unlike recent single-cell RNA-Seq analyses indicating uniformly low mRNA expression of SARS-CoV-2 entry-related host molecules in all nasal epithelial cells, we show that the protein levels are relatively high and that their localizations are restricted to the apical side of multiciliated epithelial cells. In addition, we provide evidence in patients with COVID-19 that SARS-CoV-2 is massively detected and replicated within the multiciliated cells. We observed these findings during the early stage of COVID-19, when infected ciliated cells were rapidly replaced by differentiating precursor cells. Moreover, our analyses revealed that SARS-CoV-2 cellular tropism was restricted to the nasal ciliated versus oral squamous epithelium. These results imply that targeting ciliated cells of the nasal epithelium during the early stage of COVID-19 could be an ideal strategy to prevent SARS-CoV-2 propagation.


Subject(s)
COVID-19/virology , Host Microbial Interactions , Nasal Mucosa/virology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , COVID-19/physiopathology , Cell Differentiation , Cilia/pathology , Cilia/physiology , Cilia/virology , Furin/genetics , Furin/metabolism , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Macaca , Models, Biological , Nasal Mucosa/pathology , Nasal Mucosa/physiopathology , Pandemics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Seq , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Stem Cells/pathology , Stem Cells/virology , Virus Internalization , Virus Replication/genetics , Virus Replication/physiology
5.
Int J Mol Sci ; 22(5)2021 Feb 26.
Article in English | MEDLINE | ID: covidwho-1115421

ABSTRACT

In this Review, we briefly describe the basic virology and pathogenesis of SARS-CoV-2, highlighting how stem cell technology and organoids can contribute to the understanding of SARS-CoV-2 cell tropisms and the mechanism of disease in the human host, supporting and clarifying findings from clinical studies in infected individuals. We summarize here the results of studies, which used these technologies to investigate SARS-CoV-2 pathogenesis in different organs. Studies with in vitro models of lung epithelia showed that alveolar epithelial type II cells, but not differentiated lung alveolar epithelial type I cells, are key targets of SARS-CoV-2, which triggers cell apoptosis and inflammation, while impairing surfactant production. Experiments with human small intestinal organoids and colonic organoids showed that the gastrointestinal tract is another relevant target for SARS-CoV-2. The virus can infect and replicate in enterocytes and cholangiocytes, inducing cell damage and inflammation. Direct viral damage was also demonstrated in in vitro models of human cardiomyocytes and choroid plexus epithelial cells. At variance, endothelial cells and neurons are poorly susceptible to viral infection, thus supporting the hypothesis that neurological symptoms and vascular damage result from the indirect effects of systemic inflammatory and immunological hyper-responses to SARS-CoV-2 infection.


Subject(s)
COVID-19/pathology , Organoids/virology , SARS-CoV-2/physiology , Stem Cells/virology , Animals , Apoptosis , COVID-19/virology , Cardiovascular System/cytology , Cardiovascular System/pathology , Cardiovascular System/virology , Central Nervous System/cytology , Central Nervous System/pathology , Central Nervous System/virology , Gastrointestinal Tract/cytology , Gastrointestinal Tract/pathology , Gastrointestinal Tract/virology , Humans , Inflammation/pathology , Inflammation/virology , Lung/cytology , Lung/pathology , Lung/virology , Organoids/pathology , Stem Cells/pathology , Viral Tropism , Virus Internalization
6.
Cells ; 10(1)2021 01 07.
Article in English | MEDLINE | ID: covidwho-1016107

ABSTRACT

The new strain of coronavirus (severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)) emerged in 2019 and hence is often referred to as coronavirus disease 2019 (COVID-19). This disease causes hypoxic respiratory failure and acute respiratory distress syndrome (ARDS), and is considered as the cause of a global pandemic. Very limited reports in addition to ex vivo model systems are available to understand the mechanism of action of this virus, which can be used for testing of any drug efficacy against virus infectivity. COVID-19 induces tissue stem cell loss, resulting inhibition of epithelial repair followed by inflammatory fibrotic consequences. Development of clinically relevant models is important to examine the impact of the COVID-19 virus in tissue stem cells among different organs. In this review, we discuss ex vivo experimental models available to study the effect of COVID-19 on tissue stem cells.


Subject(s)
COVID-19/pathology , Models, Theoretical , Stem Cells/pathology , Cells, Cultured , Humans
7.
Stem Cell Rev Rep ; 17(1): 214-230, 2021 02.
Article in English | MEDLINE | ID: covidwho-1009201

ABSTRACT

The COVID-19 pandemic has profoundly influenced public health and contributed to global economic divergences of unprecedented dimensions. Due to the high prevalence and mortality rates, it is then expected that the consequence and public health challenges will last for long periods. The rapid global spread of COVID-19 and lack of enough data regarding the virus pathogenicity multiplies the complexity and forced governments to react quickly against this pandemic. Stem cells represent a small fraction of cells located in different tissues. These cells play a critical role in the regeneration and restoration of injured sites. Because of their specific niche and a limited number of stem cells, the key question is whether there are different anti-viral mechanisms against viral infection notably COVID-19. Here, we aimed to highlight the intrinsic antiviral resistance in different stem cells against viral infection. These data could help us to understand the possible viral infections in different stem cells and the activation of specific molecular mechanisms upon viral entrance.


Subject(s)
COVID-19/therapy , Pandemics , Stem Cell Transplantation , Virus Diseases/therapy , COVID-19/virology , Disease Outbreaks/prevention & control , Humans , SARS-CoV-2/pathogenicity , Stem Cells/pathology , Virus Diseases/virology
8.
Lab Invest ; 101(3): 274-279, 2021 03.
Article in English | MEDLINE | ID: covidwho-968368

ABSTRACT

Disorders involving injury to tissue stem cells that ensure normal tissue homeostasis and repair have potential to show unusually devastating clinical consequences. Acute graft-versus-host disease (aGVHD) is one condition where relatively few cytotoxic immune cells target skin stem cells to produce significant morbidity and mortality. By analogy, SARS-CoV-2 is a vector that initially homes to pulmonary stem cells that preferentially express the ACE2 receptor, thus potentially incurring similarly robust pathological consequences. In older individuals, stem cell number and/or function become depleted due to pathways independent of disease-related injury to these subpopulations. Accordingly, pathologic targeting of stem cells in conditions like aGVHD and COVID-19 infection where these cells are already deficient due to the aging process may have dire consequences in elderly individuals. A hypothesis is herein advanced that, as with aGVHD, lung stem cell targeting is a potential co-factor in explaining age-related severity of COVID-19 infection.


Subject(s)
COVID-19/etiology , Graft vs Host Disease/etiology , SARS-CoV-2 , Age Factors , Aging/immunology , Aging/pathology , COVID-19/immunology , COVID-19/pathology , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Humans , Lung/immunology , Lung/pathology , Models, Biological , Risk Factors , SARS-CoV-2/pathogenicity , Skin/immunology , Skin/pathology , Stem Cells/immunology , Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL